On thermal transport by phonons in bulk and nanostructured semiconductor materials

    Tesis doctoral

    Resumen


    La presente tesis doctoral versa sobre el transporte de calor llevado a cabo por los fonones en sólidos cristalinos semiconductores. La motivación de este trabajo es doble. En primer lugar, se pretende contribuir a entender mejor cómo funciona el transporte de calor a distintas escalas de tamaño: desde semiconductores con tamaño bulk (del orden de milímetros o mayores) hasta semiconductores nano-estructurados, como por ejemplo nanocables o láminas finas, cuyos tamaños característicos están en la escala nanométrica. La intención es describir dicho transporte de calor en estas escalas en un amplio rango de temperaturas, prestando especial atención a las colisiones entre fonones, pues son la causa intrínseca de la propagación del calor en los sólidos cristalinos semiconductores. En segundo lugar, se pretende mejorar la capacidad de predicción a la hora de describir el comportamiento de la conductividad térmica de los semiconductores más comunes por su implicación en procesos termoeléctricos, como son el silicio, el diamante, el germanio y el bismuto de telurio. Para lograr alcanzar estos objetivos, es necesario formular un nuevo modelo que nos permita superar las dificultades asociadas a los modelos ya existentes, con el objetivo de cumplir dos condiciones muy deseables. Por un lado, obtener una expresión general para la conductividad térmica válida para diferentes materiales, que pueda ser aplicada a muestras de dichos materiales con diferentes composiciones isotópicas, diferentes tamaños (desde la macro hasta la nano-escala) y con diferentes geometrías. Por otro lado, dicha expresión deberá tener el menor número posible de parámetros ajustables para asegurar la fiabilidad del modelo. La potencialidad de dicho modelo radicaría en servir como herramienta a la hora de guiar el diseño de dispositivos termoeléctricos más eficientes. La presente tesis se organiza en 8 capítulos ordenados de la siguiente manera: En el capítulo 1 se contextualiza el tema en el que está enmarcado el presente trabajo de investigación y se presentan los conceptos físicos necesarios para trabajar con el transporte fonónico. En el segundo capítulo se desarrolla la dinámica de la red para los distintos materiales que serán objeto de estudio en el presente trabajo, en particular se aplica el modelo Bond-charge para obtener las relaciones de dispersión y la densidad de estados de los semiconductores del grupo IV (silicio, germanio, diamante y estaño gris) y análogamente se aplica el modelo Rigid-ion sobre el bismuto de telurio para obtener sus relaciones de dispersión y densidad de estados. Los tiempos de relajación apropiados para dichos materiales se discutirán en detalle en el capítulo 3, proponiendo nuevas expresiones empíricas para describir las interacciones fonón-fonón. En el capítulo 4 se introducen y discuten los modelos de conductividad térmica más representativos de la literatura y a continuación se presenta un nuevo modelo para predecir la conductividad térmica: el modelo Kinetic-collective, cuya principal característica consiste en interpretar el transporte de calor en dos regímenes diferentes, el primero de ellos de tipo cinético donde los fonones son tratados como partículas libres y el segundo de tipo colectivo donde todos los fonones que participan en el transporte pierden su individualidad y se comportan como una colectividad de partículas. En el capítulo 5 el modelo Kinetic-collective se aplica a silicio bulk con diferentes composiciones isotópicas, y a varias muestras de silicio nanoestructuradas con diferentes geometrías y tamaños efectivos. Se obtienen predicciones de la conductividad térmica en un amplio intervalo de temperaturas que concuerdan satisfactoriamente con las medidas experimentales y se discuten diversos aspectos novedosos sobre el transporte fonónico. En el capítulo 6 el modelo Kinetic-collective se aplica al resto de materiales componentes del grupo IV de semiconductores y se obtiene una relación teórica que nos permite predecir los valores de los parámetros libres asociados a los tiempos de relajación de dichos materiales y así poder predecir sus conductividades térmicas sin la necesidad de añadir nuevos parámetros. En el capítulo 7 vamos un paso más allá y aplicamos el modelo a bismuto de telurio, obteniendo predicciones de la conductividad térmica para nanocables con diferentes diámetros y discutimos los resultados en vista a posibles aplicaciones termoeléctricas. Finalmente, el capítulo 8 está dedicado a recoger las principales conclusiones de este trabajo de investigación y a indicar posibles líneas futuras de trabajo surgidas a consecuencia de los resultados obtenidos.
    Fecha de lectura29 oct 2014
    Idioma originalInglés
    SupervisorAndrés Cantarero Sáez (Director/a) & Francesc Xavier Alvarez Calafell (Director/a)

    Palabras clave

    • Conductividad térmica
    • Fonones
    • Semiconductores

    Citar esto

    '