El índice de refracción (RI) es un parámetro físico que proporciona información sobre la propagación de la luz a través de una muestra y está relacionado con algunas propiedades ópticas y eléctricas del medio. El RI es una propiedad intrínseca de los materiales, pero en muchos casos, cambios en la materia producidos por interacciones físicas o químicas, pueden producir una modificación de su valor, como, por ejemplo, debido a variaciones de temperatura, estrés mecánico o cambios en su composición química. Otros materiales pueden presentar diferentes valores de RI dependiendo de la dirección de propagación de la luz, como es el caso de los materiales anisótropos. Existen múltiples aplicaciones en diferentes campos, como biología, farmacología, mineralogía o caracterización de materiales, donde el valor de RI puede proporcionar información de gran utilidad. En esta tesis, hemos desarrollado un método óptico para caracterizar los índices de refracción de muestras dieléctricas isótropas y cristales anisótropos uniáxicos. Una ventaja de nuestro método es que es capaz de medir el RI en materiales en fase sólida o líquida y superficies planas o no-planas, iluminando la muestra en reflexión. Esto nos permitiría caracterizar elementos ópticos ya integrados en sistemas ópticos. La caracterización del índice de refracción in situ es hoy en día un problema por resolver, de gran interés para la industria y la investigación. La principal motivación de este trabajo es caracterizar las lentes integradas en sistemas ópticos, para las que no existe un método estándar. Hemos diseñado e implementado por primera vez, un microscopio conoscópico de Mueller que trabaja en reflexión para medir los RIs de varias muestras, independientemente de su superficie. En particular, medimos la matriz de Mueller de cualquier muestra dieléctrica mediante un polarímetro de Mueller completo y un objetivo de gran apertura numérica (HNAO). Como consecuencia, se obtiene un haz de luz polarizado y altamente focalizado que incide sobre la muestra, siendo el tamaño del punto focal más pequeño que la curvatura de la superficie de la muestra, lo que nos permite medir superficies no planas. Gracias al HNAO, el microscopio conoscópico propuesto mide simultáneamente la matriz de Mueller para un gran número de ángulos de incidencia (aquellos dentro del cono iluminando la muestra), sin ningún movimiento mecánico del sistema y obteniendo una gran redundancia de datos. Con una cámara de alta resolución se pueden registrar los diferentes patrones de intensidad correspondientes a distintas configuraciones polarimétricas, y utilizarlos para calcular la imagen de la matriz de Mueller. Hemos desarrollado el modelo matemático que nos permite determinar la matriz de Mueller teórica de la muestra. Éste se basa en los coeficientes de Fresnel, que describen la relación entre los campos eléctricos reflejado y transmitido con el haz incidente, en una interfaz entre diferentes medios. Estos coeficientes dependen, por un lado, del ángulo de incidencia, la polarización y la frecuencia del haz incidente y, por otro lado, de los índices de refracción de ambos medios. El modelo desarrollado se probó realizando una serie de simulaciones y se validó midiendo las características ópticas de matrices de Mueller simulando materiales reales e incluyendo efectos experimentales (ruido, desalineamiento, etc.). Finalmente, se ha utilizado el instrumento para medir la matriz de Mueller de materiales reales. Los diferentes parámetros ópticos del modelo pueden ser ajustados para que la matriz de Mueller teórica coincida con la experimental. Para tal fin, se ha desarrollado un programa de optimización para hallar el mejor ajuste entre simulación y datos experimentales, mediante la minimización de una función de mérito basada en el error cuadrático medio (MSE). El microscopio conoscópico de Mueller ha mostrado su potencial para caracterizar muestras dieléctricas independientemente de su superficie.
- Microscopía
- Polarimetría
- Índice de refracción
Measurement of refractive index in non-planar surfaces with a conoscopic mueller microscope
Estevez Caride, I. (Autor/a). 5 dic 2018
Tesis doctoral