Weakly Supervised Fog Detection

Adrian Galdran, Pedro Costa, Javier Vazquez-Corral, Aurelio Campilho

Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

Image dehazing tries to solve an undesired loss of visibility in outdoor images due to the presence of fog. Recently, machine-learning techniques have shown great dehazing ability. However, in order to be trained, they require training sets with pairs of foggy images and their clean counterparts, or a depth-map. In this paper, we propose to learn the appearance of fog from weakly-labeled data. Specifically, we only require a single label per-image stating if it contains fog or not. Based on the Multiple-Instance Learning framework, we propose a model that can learn from image-level labels to predict if an image contains haze reasoning at a local level. Fog detection performance of the proposed method compares favorably with two popular techniques, and the attention maps generated by the model demonstrate that it effectively learns to disregard sky regions as indicative of the presence of fog, a common pitfall of current image dehazing techniques.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
Páginas2875-2879
Número de páginas5
ISBN (versión digital)9781479970612
DOI
EstadoPublicada - 29 ago 2018

Serie de la publicación

NombreProceedings - International Conference on Image Processing, ICIP
ISSN (versión impresa)1522-4880

Huella

Profundice en los temas de investigación de 'Weakly Supervised Fog Detection'. En conjunto forman una huella única.

Citar esto