Universal algorithms for quantum data learning

Marco Fanizza, Michalis Skotiniotis, John Calsamiglia, Ramon Muñoz-Tapia, Gael Sentís*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

2 Citas (Scopus)

Resumen

Operating quantum sensors and quantum computers would make data in the form of quantum states available for purely quantum processing, opening new avenues for studying physical processes and certifying quantum technologies. In this Perspective, we review a line of works dealing with measurements that reveal structural properties of quantum datasets given in the form of product states. These algorithms are universal, meaning that their performances do not depend on the reference frame in which the dataset is provided. Requiring the universality property implies a characterization of optimal measurements via group representation theory.

Idioma originalInglés
Número de artículo28001
Número de páginas8
PublicaciónEPL
Volumen140
N.º2
DOI
EstadoPublicada - oct 2022

Huella

Profundice en los temas de investigación de 'Universal algorithms for quantum data learning'. En conjunto forman una huella única.

Citar esto