Unexpected surfaces singular on lines in P3

Marcin Dumnicki, Brian Harbourne, Joaquim Roé, Tomasz Szemberg*, Halszka Tutaj-Gasińska

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

4 Citas (Scopus)

Resumen

We study linear systems of surfaces in P3 singular along general lines. Our purpose is to identify and classify special systems of such surfaces, i.e., those non-empty systems where the conditions imposed by the multiple lines are not independent. We prove the existence of four surfaces arising as (projective) linear systems with a single reduced member. Till now no such examples have been known. These are unexpected surfaces in the sense of recent work of Cook II, Harbourne, Migliore, and Nagel. It is an open problem if our list is complete, i.e., if it contains all reduced and irreducible unexpected surfaces based on lines in P3. As an application we find Waldschmidt constants of six general lines in P3 and an upper bound for this invariant for seven general lines.

Idioma originalInglés estadounidense
Número de páginas21
PublicaciónEuropean Journal of Mathematics
DOI
EstadoPublicada - 17 nov 2020

Huella

Profundice en los temas de investigación de 'Unexpected surfaces singular on lines in P3'. En conjunto forman una huella única.

Citar esto