Under-reported data analysis with INAR-hidden Markov chains

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

35 Citas (Scopus)

Resumen

Copyright © 2016 John Wiley & Sons, Ltd. In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd.
Idioma originalInglés
Páginas (desde-hasta)4875-4890
PublicaciónStatistics in Medicine
Volumen35
N.º26
DOI
EstadoPublicada - 20 nov 2016

Huella

Profundice en los temas de investigación de 'Under-reported data analysis with INAR-hidden Markov chains'. En conjunto forman una huella única.

Citar esto