Transport properties and first-arrival statistics of random motion with stochastic reset times

Axel Masó-Puigdellosas, Daniel Campos, Vicenç Méndez

Producción científica: Contribución a una revistaArtículoInvestigación

60 Citas (Scopus)

Resumen

© 2019 American Physical Society. Stochastic resets have lately emerged as a mechanism able to generate finite equilibrium mean-square displacement (MSD) when they are applied to diffusive motion. Furthermore, walkers with an infinite mean first-arrival time (MFAT) to a given position x may reach it in a finite time when they reset their position. In this work we study these emerging phenomena from a unified perspective. On one hand, we study the existence of a finite equilibrium MSD when resets are applied to random motion with (x2(t))m∼tp for 0<p≤2. For exponentially distributed reset times, a compact formula is derived for the equilibrium MSD of the overall process in terms of the mean reset time and the motion MSD. On the other hand, we also test the robustness of the finiteness of the MFAT for different motion dynamics which are subject to stochastic resets. Finally, we study a biased Brownian oscillator with resets with the general formulas derived in this work, finding its equilibrium first moment and MSD and its MFAT to the minimum of the harmonic potential.
Idioma originalInglés
Número de artículo012141
Páginas (desde-hasta)012141
Número de páginas9
PublicaciónPhysical Review E
Volumen99
N.º1-1
DOI
EstadoPublicada - 28 ene 2019

Huella

Profundice en los temas de investigación de 'Transport properties and first-arrival statistics of random motion with stochastic reset times'. En conjunto forman una huella única.

Citar esto