Transform Optimization for the Lossy Coding of Pathology Whole-Slide Images

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

6 Citas (Scopus)

Resumen

Whole-slide images (WSIs) are high-resolution, 2D, color digital images that are becoming valuable tools for pathologists in clinical, research and formative scenarios. However, their massive size is hindering their widespread adoption. Even though lossy compression can effectively reduce compressed file sizes without affecting subsequent diagnoses, no lossy coding scheme tailored for WSIs has been described in the literature. In this paper, a novel strategy called OptimizeMCT is proposed to increase the lossy coding performance for this type of images. In particular, an optimization method is designed to find image-specific multi-component transforms (MCTs) that exploit the high inter-component correlation present in WSIs. Experimental evidence indicates that the transforms yielded by OptimizeMCT consistently attain better coding performance than the Karhunen-Loève Transform (KLT) for all tested lymphatic, pancreatic and renal WSIs. More specifically, images reconstructed at the same bitrate exhibit average PSNR values 2.85~dB higher for OptimizeMCT than for the KLT, with differences of up to 5.17 dB.

Idioma originalInglés estadounidense
Páginas (desde-hasta)131-140
Número de páginas10
PublicaciónData Compression Conference Proceedings
DOI
EstadoPublicada - 15 dic 2016

Huella

Profundice en los temas de investigación de 'Transform Optimization for the Lossy Coding of Pathology Whole-Slide Images'. En conjunto forman una huella única.

Citar esto