Topological moduli space for germs of holomorphic foliations II: universal deformations

David Marin Perez, Jean-François Mattei, Eliane Salem

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Descargas (Pure)

Resumen

This work deals with the topological classification of singular foliation germs on (C2,0). Working in a suitable class of foliations we fix the topological invariants given by the separatrix set, the Camacho-Sad indices and the projective holonomy representations and we prove the existence of a topological universal deformation through which every equisingular deformation uniquely factorizes up to topological conjugacy. This is done by representing the functor of topological classes of equisingular deformations of a f ixed foliation. We also describe the functorial dependence of this representation with respect to the foliation.
Idioma originalInglés
Número de páginas52
PublicaciónAnnali della Scuola normale superiore di Pisa - Classe di scienze
EstadoAceptada en prensa - 27 feb 2022

Huella

Profundice en los temas de investigación de 'Topological moduli space for germs of holomorphic foliations II: universal deformations'. En conjunto forman una huella única.

Citar esto