Proyectos por año
Resumen
This work deals with the topological classification of singular foliation germs on (C2,0). Working in a suitable class of foliations we fix the topological invariants given by the separatrix set, the Camacho-Sad indices and the projective holonomy representations and we prove the existence of a topological universal deformation through which every equisingular deformation uniquely factorizes up to topological conjugacy. This is done by representing the functor of topological classes of equisingular deformations of a f ixed foliation. We also describe the functorial dependence of this representation with respect to the foliation.
Idioma original | Inglés |
---|---|
Número de páginas | 52 |
Publicación | Annali della Scuola normale superiore di Pisa - Classe di scienze |
Estado | Aceptada en prensa - 27 feb 2022 |
Huella
Profundice en los temas de investigación de 'Topological moduli space for germs of holomorphic foliations II: universal deformations'. En conjunto forman una huella única.Proyectos
- 1 Terminado
-
Invariantes locales y globales en geometria
Solanes Farres, G. (Principal Investigator), Balacheff , F. N. (Co-Investigador/a Principal), Rubio Nuñez, R. (Colaborador/a), Gallego Gomez, E. (Investigador/a), Heusener, M. (Investigador/a), Marin Perez, D. (Investigador/a), Meersseman, L. (Investigador/a), Nicolau Reig, M. (Investigador/a), Porti Pique, J. (Investigador/a), Reventos Tarrida, A. (Investigador/a) & Mijares Verdú, S. (Colaborador/a)
Ministerio de Ciencia e Innovación (MICINN)
1/01/19 → 30/09/22
Proyecto: Proyectos y Ayudas de Investigación