The minimal length product over homology bases of manifolds

Florent Balacheff*, Steve Karam, Hugo Parlier

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

2 Citas (Scopus)
1 Descargas (Pure)

Resumen

Minkowski’s second theorem can be stated as an inequality for n-dimensional flat Finsler tori relating the volume and the minimal product of the lengths of closed geodesics which form a homology basis. In this paper we show how this fundamental result can be promoted to a principle holding for a larger class of Finsler manifolds. This includes manifolds for which first Betti number and dimension do no necessarily coincide, a prime example being the case of surfaces. This class of manifolds is described by a non-vanishing condition for the hyperdeterminant reduced modulo 2 of the multilinear map induced by the fundamental class of the manifold on its first Z2-cohomology group using the cup product.

Idioma originalInglés
Páginas (desde-hasta)825-854
Número de páginas30
PublicaciónMathematische Annalen
Volumen380
N.º1-2
DOI
EstadoPublicada - jun 2021

Huella

Profundice en los temas de investigación de 'The minimal length product over homology bases of manifolds'. En conjunto forman una huella única.

Citar esto