TY - JOUR
T1 - Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature
AU - Gil, Carles
AU - Cubí, Roger
AU - Blasi, Juan
AU - Aguilera, José
PY - 2006/10/6
Y1 - 2006/10/6
N2 - Although the high presence of cholesterol in nerve terminals is well documented, specific roles of this lipid in transmitter release have remained elusive. Since cholesterol is a highly enriched component in the membrane microdomains known as lipid rafts, it is probable that these domains are very important in synaptic function. The extraction of lipid rafts using Brij 98 at 37 °C avoids the formation of nonspecific membrane aggregates at low temperature, allowing the isolation of more physiologically relevant lipid rafts. In the present work, we examine, by means of buoyancy analysis in sucrose gradients after solubilization of the membranes with Brij 98 or with Lubrol WX, the presence of proteins involved in exocytosis in detergent-resistant membranes (DRM) using rat brain synaptosomes as a neurological model. Significant proportions of the proteins tested in the present work, which are involved in neurotransmitter release, are found in Brij 98 raft fractions, demonstrating that significant pools of synaptic proteins are segregated in specific parts of the membrane at physiological temperature. On the other hand, Lubrol WX is unable to solubilize the major fraction of the proteins tested. Treatment of synaptosomes with methyl-β-cyclodextrin (mβCD) causes alteration in the buoyancy properties of proteins initially present in Brij- as well as in Lubrol-resistant membranes, indicating the cholesterol-dependency of both kinds of microdomains. Finally, we detect the depolarization-induced enhancement of the cholesterol-dependent association of syntaxin 1 with Brij 98-rafts, under the same conditions in which prolonged neurotransmitter release is stimulated. © 2006 Elsevier Inc. All rights reserved.
AB - Although the high presence of cholesterol in nerve terminals is well documented, specific roles of this lipid in transmitter release have remained elusive. Since cholesterol is a highly enriched component in the membrane microdomains known as lipid rafts, it is probable that these domains are very important in synaptic function. The extraction of lipid rafts using Brij 98 at 37 °C avoids the formation of nonspecific membrane aggregates at low temperature, allowing the isolation of more physiologically relevant lipid rafts. In the present work, we examine, by means of buoyancy analysis in sucrose gradients after solubilization of the membranes with Brij 98 or with Lubrol WX, the presence of proteins involved in exocytosis in detergent-resistant membranes (DRM) using rat brain synaptosomes as a neurological model. Significant proportions of the proteins tested in the present work, which are involved in neurotransmitter release, are found in Brij 98 raft fractions, demonstrating that significant pools of synaptic proteins are segregated in specific parts of the membrane at physiological temperature. On the other hand, Lubrol WX is unable to solubilize the major fraction of the proteins tested. Treatment of synaptosomes with methyl-β-cyclodextrin (mβCD) causes alteration in the buoyancy properties of proteins initially present in Brij- as well as in Lubrol-resistant membranes, indicating the cholesterol-dependency of both kinds of microdomains. Finally, we detect the depolarization-induced enhancement of the cholesterol-dependent association of syntaxin 1 with Brij 98-rafts, under the same conditions in which prolonged neurotransmitter release is stimulated. © 2006 Elsevier Inc. All rights reserved.
KW - cholesterol
KW - Exocytosis
KW - Lipid rafts
KW - Membrane microdomains
KW - SNARE proteins
KW - Synaptic vesicles
U2 - 10.1016/j.bbrc.2006.07.201
DO - 10.1016/j.bbrc.2006.07.201
M3 - Article
SN - 0006-291X
VL - 348
SP - 1334
EP - 1342
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 4
ER -