Resumen
We study the stable norm on the first homology of a closed non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 1337-1369 |
Número de páginas | 33 |
Publicación | Annales de l'Institut Fourier |
Volumen | 58 |
N.º | 4 |
DOI | |
Estado | Publicada - 2008 |