Stability diagram for 4D linear periodic systems with applications to homographic solutions

Regina Martínez, Anna Samà, Carles Simó

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

22 Citas (Scopus)

Resumen

We consider a family of 4-dimensional Hamiltonian time-periodic linear systems depending on three parameters, λ1, λ2 and ε such that for ε = 0 the system becomes autonomous. Using normal form techniques we study stability and bifurcations for ε > 0 small enough. We pay special attention to the d'Alembert case. The results are applied to the study of the linear stability of homographic solutions of the planar three-body problem, for some homogeneous potential of degree -α, 0 < α < 2, including the Newtonian case. © 2006 Elsevier Inc. All rights reserved.
Idioma originalInglés
Páginas (desde-hasta)619-651
PublicaciónJournal of Differential Equations
Volumen226
DOI
EstadoPublicada - 15 jul 2006

Huella

Profundice en los temas de investigación de 'Stability diagram for 4D linear periodic systems with applications to homographic solutions'. En conjunto forman una huella única.

Citar esto