Resumen
We show that there exists an upper bound for the number of squares in arithmetic progression over a number field that depends only on the degree of the field. We show that this bound is 5 for quadratic fields, and also that the result generalizes to k-powers for integers k> 1. © 2011 Elsevier Inc.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 379-389 |
Publicación | Journal of Number Theory |
Volumen | 132 |
N.º | 3 |
DOI | |
Estado | Publicada - 1 mar 2012 |