Semi-supervised source extraction methodology for the nosological imaging of glioblastoma response to therapy

Sandra Ortega-Martorell, Ivan Olier, Teresa Delgado-Goñi, Magdalena Ciezka, Margarida Julià-Sapé, Paulo Lisboa, Carles Arús

Producción científica: Otra contribución

2 Citas (Scopus)

Resumen

Glioblastomas are one the most aggressive brain tumors. Their usual bad prognosis is due to the heterogeneity of their response to treatment and the lack of early and robust biomarkers to decide whether the tumor is responding to therapy. In this work, we propose the use of a semi-supervised methodology for source extraction to identify the sources representing tumor response to therapy, untreated/unresponsive tumor, and normal brain; and create nosological images of the response to therapy based on those sources. Fourteen mice were used to calculate the sources, and an independent test set of eight mice was used to further evaluate the proposed approach. The preliminary results obtained indicate that was possible to discriminate response and untreated/unresponsive areas of the tumor, and that the color-coded images allowed convenient tracking of response, especially throughout the course of therapy.

Idioma originalInglés estadounidense
EditorInstitute of Electrical and Electronics Engineers Inc.
Número de páginas6
ISBN (versión digital)9781479945191
DOI
EstadoPublicada - 13 ene 2015

Series de publicaciones

NombreIEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CIDM 2014: 2014 IEEE Symposium on Computational Intelligence and Data Mining, Proceedings

Huella

Profundice en los temas de investigación de 'Semi-supervised source extraction methodology for the nosological imaging of glioblastoma response to therapy'. En conjunto forman una huella única.

Citar esto