Self-supervised learning of visual features through embedding images into text topic spaces

Lluis Gomez, Yash Patel, Marçal Rusinol, Dimosthenis Karatzas, C. V. Jawahar

Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

90 Citas (Scopus)

Resumen

End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multimodal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multimodal retrieval compared to recent self-supervised or natural-supervised approaches.

Idioma originalInglés
Título de la publicación alojadaProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas2017-2026
Número de páginas10
ISBN (versión digital)9781538604571
DOI
EstadoPublicada - 6 nov 2017

Serie de la publicación

NombreProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volumen2017-January

Huella

Profundice en los temas de investigación de 'Self-supervised learning of visual features through embedding images into text topic spaces'. En conjunto forman una huella única.

Citar esto