Scalability of a multi-physics system for forest fire spread prediction in multi-core platforms

Angel Farguell, Ana Cortés, Tomàs Margalef, Josep R. Miró, J. Mercader

Producción científica: Contribución a una revistaArtículoInvestigación

9 Citas (Scopus)

Resumen

© 2018, The Author(s). Advances in high-performance computing have led to an improvement in modeling multi-physics systems because of the capacity to solve complex numerical systems in a reasonable time. WRF–SFIRE is a multi-physics system that couples the atmospheric model WRF and the forest fire spread model called SFIRE with the objective of considering the atmosphere–fire interactions. In systems like WRF–SFIRE, the trade-off between result accuracy and time required to deliver that result is crucial. So, in this work, we analyze the influence of WRF–SFIRE settings (grid resolutions) into the forecasts accuracy and into the execution times on multi-core platforms using OpenMP and MPI parallel programming paradigms.
Idioma originalInglés
Páginas (desde-hasta)1163-1174
Número de páginas12
PublicaciónJournal of Supercomputing
Volumen75
N.º3
DOI
EstadoPublicada - 1 mar 2019

Huella

Profundice en los temas de investigación de 'Scalability of a multi-physics system for forest fire spread prediction in multi-core platforms'. En conjunto forman una huella única.

Citar esto