Saliency estimation using a non-parametric low-level vision model

Naila Murray*, Maria Vanrell, Xavier Otazu, C. Alejandro Parraga

*Autor correspondiente de este trabajo

Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

333 Citas (Scopus)

Resumen

Many successful models for predicting attention in a scene involve three main steps: convolution with a set of filters, a center-surround mechanism and spatial pooling to construct a saliency map. However, integrating spatial information and justifying the choice of various parameter values remain open problems. In this paper we show that an efficient model of color appearance in human vision, which contains a principled selection of parameters as well as an innate spatial pooling mechanism, can be generalized to obtain a saliency model that outperforms state-of-the-art models. Scale integration is achieved by an inverse wavelet transform over the set of scale-weighted center-surround responses. The scale-weighting function (termed ECSF) has been optimized to better replicate psychophysical data on color appearance, and the appropriate sizes of the center-surround inhibition windows have been determined by training a Gaussian Mixture Model on eye-fixation data, thus avoiding ad-hoc parameter selection. Additionally, we conclude that the extension of a color appearance model to saliency estimation adds to the evidence for a common low-level visual front-end for different visual tasks.

Idioma originalInglés
Título de la publicación alojada2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011
Páginas433-440
Número de páginas8
DOI
EstadoPublicada - 2011

Serie de la publicación

NombreProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (versión impresa)1063-6919

Huella

Profundice en los temas de investigación de 'Saliency estimation using a non-parametric low-level vision model'. En conjunto forman una huella única.

Citar esto