Resumen
Muscle inflammation can be a prominent feature in several muscular dystrophies. In dysferlin myopathy, it is mainly composed of macrophages. To understand the origin of inflammation in dysferlin-deficient muscle, we analyzed soluble factors involved in monocyte chemotaxis released by myoblasts and myotubes from control and dysferlinopathy patients using a transwell system. Dysferlin-deficient myotubes released more soluble factors involved in monocyte chemotaxis compared with controls (p < 0.001). Messenger RNA microarray analysis showed a 3.2-fold increase of thrombospondin 1 (TSP-1) expression in dysferlin-deficient myotubes. Retrotranscriptasepolymerase chain reaction analysis, ELISA, and immunohistochemistry confirmed these results. Dysferlin mRNA knockdown with short-interfering RNA in normal myogenic cells resulted in TSP-1 mRNA upregulation and increased chemotaxis. Furthermore, monocyte chemotaxis was decreased when TSP-1 was blocked by specific antibodies. In muscle biopsies from dysferlinopathy patients, TSP-1 expression was increased in muscle fibers but not in biopsies of patientswith other myopathies with inflammation; TSP-1 was seen in some macrophages in all samples analyzed. Taken together, the data demonstrate that dysferlin-deficient muscle upregulates TSP-1 in vivoand in vitro and indicate that endogenous chemotactic factors arecrucial to the sustained inflammatory process observed in dysferlinopathies. © 2010 by the American Association of Neuropathologists, Inc.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 643-653 |
Publicación | Journal of Neuropathology and Experimental Neurology |
Volumen | 69 |
N.º | 6 |
DOI | |
Estado | Publicada - 1 jun 2010 |