TY - JOUR
T1 - Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals
AU - Matera, Carlo
AU - Calvé, Pablo
AU - Casadó-Anguera, Verònica
AU - Sortino, Rosalba
AU - Gomila, Alexandre M.J.
AU - Moreno, Estefanía
AU - Gener, Thomas
AU - Delgado-Sallent, Cristina
AU - Nebot, Pau
AU - Costazza, Davide
AU - Conde-Berriozabal, Sara
AU - Masana, Mercè
AU - Hernando, Jordi
AU - Casadó, Vicent
AU - Puig, M. Victoria
AU - Gorostiza, Pau
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.
AB - Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.
KW - GPCR
KW - azobenzene
KW - behavior
KW - brainwave
KW - dopamine
KW - in vivo electrophysiology
KW - optogenetics
KW - optopharmacology
KW - photochromism
KW - photopharmacology
KW - photoswitch
KW - zebrafish
UR - http://www.scopus.com/inward/record.url?scp=85137562982&partnerID=8YFLogxK
U2 - 10.3390/ijms231710114
DO - 10.3390/ijms231710114
M3 - Article
C2 - 36077512
AN - SCOPUS:85137562982
SN - 1661-6596
VL - 23
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 17
M1 - 10114
ER -