Resumen
In this paper we study removable singularities for regular .1; 1=2/-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the L2 boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 547-588 |
Número de páginas | 42 |
Publicación | Revista Matematica Iberoamericana |
Volumen | 38 |
N.º | 2 |
DOI | |
Estado | Publicada - 21 jun 2021 |