Regularized Riesz energies of submanifolds

Jun O'Hara, Gil Solanes

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

15 Citas (Scopus)

Resumen

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Given a closed submanifold, or a compact regular domain, in Euclidean space, we consider the Riesz energy defined as the double integral of some power of the distance between pairs of points. When this integral diverges, we compare two different regularization techniques (Hadamard's finite part and analytic continuation), and show that they give essentially the same result. We prove that some of these energies are invariant under Möbius transformations, thus giving a generalization to higher dimensions of the Möbius energy of knots.
Idioma originalInglés
Páginas (desde-hasta)1356-1373
PublicaciónMathematische Nachrichten
Volumen291
N.º8-9
DOI
EstadoPublicada - 1 jun 2018

Huella

Profundice en los temas de investigación de 'Regularized Riesz energies of submanifolds'. En conjunto forman una huella única.

Citar esto