Providing wastewater treatment plants with predictive knowledge based on transition networks

J. M. Gimeno, J. Bejar, M. Sanchez-Marre, U. Cortes, I. R. Roda, M. Poch, J. Lafuente

    Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

    4 Citas (Scopus)

    Resumen

    Presents a progress report on integrating predictive skills into an integrated AI system for wastewater treatment plant (WWTP) supervision and control. Although the embedded approaches within the previously developed architecture, called DAI-DEPUR, such as numerical control knowledge, rule-based reasoning and case-based reasoning, are able to cope with the overall supervision task of a plant, one feature is missing: Predictive knowledge. With the previous approaches, the supervisory system works reasonably well, but the actuation process always restores the normal operation of a WWTP tardily. Thus, the supervision is implemented in an a posteriori fashion, which can be very dangerous for the environment. The integration of a new kind of knowledge can overcome this problem of control systems.

    Idioma originalInglés estadounidense
    Título de la publicación alojadaProceedings - Intelligent Information Systems, IIS 1997
    EditoresHojjat Adeli
    Páginas355-359
    Número de páginas5
    ISBN (versión digital)0818682183, 9780818682186
    DOI
    EstadoPublicada - 1 ene 1997

    Serie de la publicación

    NombreProceedings - Intelligent Information Systems, IIS 1997

    Huella

    Profundice en los temas de investigación de 'Providing wastewater treatment plants with predictive knowledge based on transition networks'. En conjunto forman una huella única.

    Citar esto