Population distribution over time: modelling local spatial dependence with a CAR process

Ilenia Epifani, Chiara Ghiringhelli, Rosella Nicolini*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

9 Citas (Scopus)
2 Descargas (Pure)

Resumen

The effectiveness of local spatial dependence in shaping the population density distribution is investigated. Individual location preferences are modelled by considering the status-related features of a given spatial unit and its neighbours as well as local random spatial dependence. The novelty is framing such a dependence through conditionally autoregressive (CAR) census random effects that are added to a spatially lagged explanatory variable X (SLX) setting. The results not only confirm that controlling for the spatial dimension is relevant but also indicate that local spatial dependence warrants consideration when determining the population distribution of recent decades. In this respect, the framework turns out to be useful for the analysis of microdata in which individual relationships (in a same spatial unit) enforce local spatial dependence.
Idioma originalInglés estadounidense
Páginas (desde-hasta)120-144
Número de páginas25
PublicaciónSpatial Economic Analysis
Volumen15
N.º2
DOI
EstadoPublicada - 20 ene 2020

Huella

Profundice en los temas de investigación de 'Population distribution over time: modelling local spatial dependence with a CAR process'. En conjunto forman una huella única.

Citar esto