Performance Improvement on k2-Raster Compact Data Structure for Hyperspectral Scenes

Kevin Chow*, Dion Eustathios Olivier Tzarmarias, Miguel Hernandez-Cabronero, Ian Blanes, Joan Serra-Sagrista

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

This letter proposes methods to improve data size and access time for k2-raster, a losslessly compressed data structure that provides efficient storage and real-time processing. Hyperspectral scenes from real missions are used as our testing data. In previous studies, with k2-raster, the size of the hyperspectral data was reduced by up to 52% compared with the uncompressed data. In this letter, we continue to explore novel ways of further reducing the data size and access time. First, we examine the possibility of using the raster matrix of hyperspectral data without any padding (unpadded matrix) while still being able to compress the structure and access the data. Second, we examine some integer encoders, more specifically the Simple family. We discuss their ability to provide random element access and compare them with directly addressable codes (DACs), the integer encoder used in the original description for k2 -raster. Experiments show that the use of unpadded matrices has improved the storage size up to 6% while the use of a different integer encoder reduces the storage size up to 6% and element access time up to 20%.

Idioma originalInglés
PublicaciónIEEE Geoscience and Remote Sensing Letters
Volumen19
DOI
EstadoPublicada - 2022

Huella

Profundice en los temas de investigación de 'Performance Improvement on k2-Raster Compact Data Structure for Hyperspectral Scenes'. En conjunto forman una huella única.

Citar esto