On the space of null geodesics of a spacetime: the compact case, Engel geometry and retrievability

Adrià Marín-Salvador, Roberto Rubio*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

2 Descargas (Pure)

Resumen

We compute the contact manifold of null geodesics of the family of spacetimes {(S2×S1,g∘-d2c2dt2)}d,c∈N+coprime , with g the round metric on S2 and t the S1 -coordinate. We find that these are the lens spaces L(2c, 1) together with the pushforward of the canonical contact structure on STS2≅ L(2 , 1) under the natural projection L(2 , 1) → L(2 c, 1) . We extend this computation to Z× S1 for Z a Zoll manifold. On the other hand, motivated by these examples, we show how Engel geometry can be used to describe the manifold of null geodesics of a certain class of three-dimensional spacetimes, by considering the Cartan deprolongation of their Lorentz prolongation. We characterize the three-dimensional contact manifolds that are contactomorphic to the space of null geodesics of a spacetime. The characterization consists in the existence of an overlying Engel manifold with a certain foliation and, in this case, we also retrieve the spacetime.

Idioma originalInglés
Número de artículo15
Páginas (desde-hasta)1-22
Número de páginas22
PublicaciónMathematische Zeitschrift
Volumen306
N.º1
DOI
EstadoPublicada - ene 2024

Huella

Profundice en los temas de investigación de 'On the space of null geodesics of a spacetime: the compact case, Engel geometry and retrievability'. En conjunto forman una huella única.

Citar esto