On the number of stable solutions in the Kuramoto model

Alex Arenas, Antonio Garijo, Sergio Gómez, Jordi Villadelprat

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

We consider a system of n coupled oscillators described by the Kuramoto model with the dynamics given by θ˙=ω+Kf(θ). In this system, an equilibrium solution θ∗ is considered stable when ω+Kf(θ∗)=0, and the Jacobian matrix Df(θ∗) has a simple eigenvalue of zero, indicating the presence of a direction in which the oscillators can adjust their phases. Additionally, the remaining eigenvalues of Df(θ∗) are negative, indicating stability in orthogonal directions. A crucial constraint imposed on the equilibrium solution is that |Γ(θ∗)|≤π, where |Γ(θ∗)| represents the length of the shortest arc on the unit circle that contains the equilibrium solution θ∗. We provide a proof that there exists a unique solution satisfying the aforementioned stability criteria. This analysis enhances our understanding of the stability and uniqueness of these solutions, offering valuable insights into the dynamics of coupled oscillators in this system.

Idioma originalInglés
Número de artículo093127
Número de páginas8
PublicaciónChaos: An Interdisciplinary Journal of Nonlinear Science
Volumen33
N.º9
Fecha en línea anticipada20 sept 2023
DOI
EstadoPublicada - sept 2023

Huella

Profundice en los temas de investigación de 'On the number of stable solutions in the Kuramoto model'. En conjunto forman una huella única.

Citar esto