On the families of periodic orbits which bifurcate from the circular Sitnikov motions

Edward Belbruno, Jaume Llibre, Mercè Ollé

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

79 Citas (Scopus)

Resumen

In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described. © 1994 Kluwer Academic Publishers.
Idioma originalInglés
Páginas (desde-hasta)99-129
PublicaciónCelestial Mechanics & Dynamical Astronomy
Volumen60
N.º1
DOI
EstadoPublicada - 1 sept 1994

Huella

Profundice en los temas de investigación de 'On the families of periodic orbits which bifurcate from the circular Sitnikov motions'. En conjunto forman una huella única.

Citar esto