On the cyclicity of Kolmogorov polycycles

David Marín, Jordi Villadelprat*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper we study planar polynomial Kolmogorov’s differential systems Xµ { = x f (x, y; µ), ẏ = yg(x, y; µ), with the parameter µ varying in an open subset Λ ⊂ RN. Compactifying Xµ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all µ ∈ Λ. We are interested in the cyclicity of Γ inside the family {Xµ}µ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb µ. In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N = 3 and N = 5, and in both cases we are able to determine the cyclicity of the polycycle for all µ ∈ Λ, including those parameters for which the return map along Γ is the identity.

Idioma originalInglés
Páginas (desde-hasta)1-31
Número de páginas31
PublicaciónElectronic Journal of Qualitative Theory of Differential Equations
Volumen2022
N.º35
DOI
EstadoPublicada - 2022

Huella

Profundice en los temas de investigación de 'On the cyclicity of Kolmogorov polycycles'. En conjunto forman una huella única.

Citar esto