On the complex geometry of a class of non-Kählerian manifolds

J. J. Loeb, M. Nicolau

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

17 Citas (Scopus)

Resumen

In a recent paper a class of complex, compact and non-Kählerian manifolds was constructed by S. López de Medrano and A. Verjowsky. This class contains as particular cases Calabi-Eckmann manifolds, almost all Hopf manifolds and many of the examples given previously by J.-J. Loeb and M. Nicolau. In this paper we show that these manifolds are endowed with a natural non-singular vector field which is transversely Kählerian, and that analytic subsets of appropriate dimensions are tangent to this vector field. This permits to give a precise description of these sets in the generic case. In the proof, an important role is played by some complex abelian groups which are biholomorphic to big domains in these manifolds.
Idioma originalInglés
Páginas (desde-hasta)371-379
PublicaciónIsrael Journal of Mathematics
Volumen110
DOI
EstadoPublicada - 1 ene 1999

Huella

Profundice en los temas de investigación de 'On the complex geometry of a class of non-Kählerian manifolds'. En conjunto forman una huella única.

Citar esto