On an almost sharp Liouville-type theorem for fractional Navier-Stokes equations

Diego Chamorro, Bruno Poggi

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Citas (Web of Science)

Resumen

We investigate existence, Liouville-type theorems, and regularity results for the 3D stationary and incompressible fractional Navier-Stokes equations: in this setting the usual Laplacian is replaced by its fractional power (−∆) α 2 with 0 < α < 2. By applying a fixed-point argument, weak solutions can be obtained in the Sobolev space H˙α2 (R3) and if we add an extra integrability condition, stated in terms of Lebesgue spaces, then we can prove for some values of α that the zero function is the unique smooth solution. The additional integrability condition is almost sharp for 3/5 < α < 5/3. Moreover, in the case 1 < α < 2 a gain of regularity is established under some conditions, although the study of regularity in the regime 0 < α ≤ 1 seems for the moment to be an open problem.
Idioma originalInglés
Páginas (desde-hasta)27-43
Número de páginas17
PublicaciónPublicacions matemàtiques
Volumen69
N.º1
DOI
EstadoPublicada - 2025

Huella

Profundice en los temas de investigación de 'On an almost sharp Liouville-type theorem for fractional Navier-Stokes equations'. En conjunto forman una huella única.

Citar esto