New lower bounds for the Hilbert numbers using reversible centers

Rafel Prohens, Joan Torregrosa

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

17 Citas (Scopus)

Resumen

In this paper we provide the best lower bounds, that are known up to now, for the Hilbert numbers of polynomial vector fields of degree N,, for small values of N. These limit cycles appear bifurcating from symmetric Darboux reversible centers with very high simultaneous cyclicity. The considered systems have, at least, three centers, one on the reversibility straight line and two symmetric outside it. More concretely, the limit cycles are in a three nests configuration and the total number of limit cycles is at least 2n + m, for some values of n and m. The new lower bounds are obtained using simultaneous degenerate Hopf bifurcations. In particular, H(4) ≥ 28, H(5) ≥ 37, H(6) ≥ 53, H(7) ≥ 74, H(8) ≥ 96, H(9) ≥ 120 and H(10) ≥ 142.
Idioma originalInglés
Páginas (desde-hasta)0331-355
Número de páginas25
PublicaciónNonlinearity
Volumen32
N.º1
DOI
EstadoAceptada en prensa - 2019

Huella

Profundice en los temas de investigación de 'New lower bounds for the Hilbert numbers using reversible centers'. En conjunto forman una huella única.

Citar esto