TY - JOUR
T1 - Multiscale modeling of Schottky-barrier MOSFETs with disilicide source/drain contacts: Role of contacts in the carrier injection
AU - Dubois, M.
AU - Jiménez, D.
AU - De Andres, P. L.
AU - Roche, S.
PY - 2007/9/28
Y1 - 2007/9/28
N2 - We report on a multiscale approach for the simulation of electrical characteristics of metal disilicide based Schottky-barrier metal oxide semiconductor field-effect transistors (SB-MOSFETs). Atomistic tight-binding method and nonequilibrium Green's function formalism are combined to calculate the propagation of charge carriers in the metal and the charge distribution at the M Si2 (111) Si (111) and M Si2 (111) Si (100) (with M=Ni, Co, and Fe) contacts. Quantum transmission coefficients at the interfaces are then computed accounting for energy and momentum conservation, and are further used as input parameters for a compact model of SB-MOSFET current-voltage simulations. In the quest for nanodevice performance optimization, this approach allows unveiling the role of different materials in configurations relevant for heterostructure nanowires. © 2007 The American Physical Society.
AB - We report on a multiscale approach for the simulation of electrical characteristics of metal disilicide based Schottky-barrier metal oxide semiconductor field-effect transistors (SB-MOSFETs). Atomistic tight-binding method and nonequilibrium Green's function formalism are combined to calculate the propagation of charge carriers in the metal and the charge distribution at the M Si2 (111) Si (111) and M Si2 (111) Si (100) (with M=Ni, Co, and Fe) contacts. Quantum transmission coefficients at the interfaces are then computed accounting for energy and momentum conservation, and are further used as input parameters for a compact model of SB-MOSFET current-voltage simulations. In the quest for nanodevice performance optimization, this approach allows unveiling the role of different materials in configurations relevant for heterostructure nanowires. © 2007 The American Physical Society.
U2 - 10.1103/PhysRevB.76.115337
DO - 10.1103/PhysRevB.76.115337
M3 - Article
SN - 1098-0121
VL - 76
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
M1 - 115337
ER -