Multiple stratonovich integral and Hu-Meyer formula for Lévy processes

Maria Jolis, Frederic Utzet, Mercè Farré

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

11 Citas (Scopus)

Resumen

In the framework of vector measures and the combinatorial approach to stochastic multiple integral introduced by Rota and Wallstrom [Ann. Probab. 25 (1997) 1257-1283], we present an Itô multiple integral and a Stratonovich multiple integral with respect to a Lévy process with finite moments up to a convenient order. In such a framework, the Stratonovich multiple integral is an integral with respect to a product random measure whereas the Itô multiple integral corresponds to integrate with respect to a random measure that gives zero mass to the diagonal sets. A general Hu-Meyer formula that gives the relationship between both integrals is proved. As particular cases, the classical Hu-Meyer formulas for the Brownian motion and for the Poisson process are deduced. Furthermore, a pathwise interpretation for the multiple integrals with respect to a subordinator is given. © Institute of Mathematical Statistics, 2010.
Idioma originalInglés
Páginas (desde-hasta)2136-2169
Número de páginas34
PublicaciónAnnals of Probability
Volumen38
N.º6
DOI
EstadoPublicada - 1 nov 2010

Huella

Profundice en los temas de investigación de 'Multiple stratonovich integral and Hu-Meyer formula for Lévy processes'. En conjunto forman una huella única.

Citar esto