Multiclass Lesion Detection Using Longitudinal MRI in Multiple Sclerosis

Ander Elkoroaristizabal, Francesc Vivó, Albert Calvi, Elisabeth Solana, Elisabet Lopez-Soley, Salut Alba-Arbalat, Marcos Diaz-Hurtado, Baris Kanber, Jordi Casas-Roma, Sara Llufriu, Ferran Prados, Eloy Martínez-Heras

Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

Resumen

Accurate detection of white matter (WM) lesions is essential for diagnosing and monitoring Multiple Sclerosis (MS), but manual lesion identification is challenging and time-consuming. This study employs the “no new U-Net” (nnU-Net) version 2 architecture to enhance the lesion segmentation process. We trained our model with a fine-tuned version of the default nnU-Net configuration incorporating extreme oversampling and a smaller learning rate to improve new or evolving lesion detection. Results showed that our nnU-Net v2 achieved a F1 score of 0.73 for baseline lesions and 0.75 for new or evolving lesions, demonstrating notable performance in identifying both types of lesions, and that the model generalized well to the MSSEG-2 dataset. This study highlights the capabilities of the nnU-Net v2 architecture for robust WM lesion detection in longitudinal cohorts. The final phase involved packaging our top-performing ensemble of models into a Docker container for easy usage, enabling the automatic distinction between baseline and new or evolving lesions
Idioma originalInglés
Título de la publicación alojadaArtificial Intelligence Research and Development
Subtítulo de la publicación alojada Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence
Páginas113 - 121
Número de páginas9
Volumen390
ISBN (versión digital)978-1-64368-543-4
DOI
EstadoPublicada - 25 sept 2024

Huella

Profundice en los temas de investigación de 'Multiclass Lesion Detection Using Longitudinal MRI in Multiple Sclerosis'. En conjunto forman una huella única.

Citar esto