Multi-illuminant estimation with conditional random fields

Shida Beigpour, Christian Riess, Joost Van De Weijer, Elli Angelopoulou

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

69 Citas (Scopus)

Resumen

Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach. © 1992-2012 IEEE.
Idioma originalInglés
Número de artículo6637091
Páginas (desde-hasta)83-96
PublicaciónIEEE Transactions on Image Processing
Volumen23
N.º1
DOI
EstadoPublicada - 1 ene 2014

Huella

Profundice en los temas de investigación de 'Multi-illuminant estimation with conditional random fields'. En conjunto forman una huella única.

Citar esto