Monte Carlo dose enhancement studies in microbeam radiation therapy

I. Martínez-Rovira*, Y. Prezado

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

27 Citas (Scopus)


Purpose: A radical radiation therapy treatment for gliomas requires extremely high absorbed doses resulting in subsequent deleterious side effects in healthy tissue. Microbeam radiation therapy (MRT) is an innovative technique based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The synchrotron-generated x-ray beam is collimated and delivered to an array of narrow micrometer-sized planar rectangular fields. Several preclinical experiments performed at the Brookhaven National Laboratory (BNL) and at the European Synchrotron Radiation Facility (ESRF) confirmed that MRT yields a higher therapeutic index than nonsegmented beams of the same characteristics. This index can be greatly improved by loading the tumor with high atomic number (Z) contrast agents. The aim of this work is to find the high-Z element that provides optimum dose enhancement. Methods: Monte Carlo simulations (PENELOPE/penEasy) were performed to assess the peak and valley doses as well as their ratio (PVDR) in healthy tissue and in the tumor, loaded with different contrast agents. The optimization criteria used were maximization of the ratio between the PVDR values in healthy tissue respect to the PVDR in the tumor and minimization of bone and brain valley doses. Results: Dose enhancement factors, PVDR, and valley doses were calculated for different high-Z elements. A significant decrease of PVDR values in the tumor, accompanied by a gain in the valley doses, was found in the presence of high-Z elements. This enables the deposited dose in the healthy tissue to be reduced. The optimum high-Z element depends on the irradiation configuration. As a general trend, the best outcome is provided by the highest Z contrast agents considered, i.e., gold and thallium. However, lanthanides (especially Lu) and hafnium also offer a satisfactory performance. Conclusions: The remarkable therapeutic index in microbeam radiation therapy can be further improved by loading the tumor with a high-Z element. This study reports quantitative data on several dosimetric magnitudes in order to find the optimum contrast agent. Although the final choice of the element will also depend on possible cytotoxicity, three elements were found to be worthy of mention: gold, thallium, and lutetium.

Idioma originalInglés
Páginas (desde-hasta)4430-4439
Número de páginas10
PublicaciónMedical Physics
EstadoPublicada - jul 2011


Profundice en los temas de investigación de 'Monte Carlo dose enhancement studies in microbeam radiation therapy'. En conjunto forman una huella única.

Citar esto