TY - JOUR
T1 - Molecular Characterization of Ypi1, a Novel Saccharomyces cerevisiae Type 1 Protein Phosphatase Inhibitor
AU - García-Gimeno, Maria Adelaida
AU - Muñoz, Iván
AU - Ariño, Joaquín
AU - Sanz, Pascual
PY - 2003/11/28
Y1 - 2003/11/28
N2 - The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.
AB - The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.
U2 - 10.1074/jbc.M306157200
DO - 10.1074/jbc.M306157200
M3 - Article
SN - 0021-9258
VL - 278
SP - 47744
EP - 47752
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 48
ER -