Macroscopic schoen conjecture for manifolds with nonzero simplicial volume

F. Balacheff, S. Karam

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

5 Citas (Scopus)
1 Descargas (Pure)

Resumen

We prove that given a hyperbolic manifold endowed with an auxiliary Riemannian metric whose sectional curvature is negative and whose volume is sufficiently small in comparison to the hyperbolic one, we can always find for any radius at least 1 a ball in its universal cover whose volume is bigger than the hyperbolic one. This result is deduced from a nonsharp macroscopic version of a conjecture by R. Schoen about scalar curvature, whose proof is a variation of an argument due to M. Gromov and is based on a smoothing technique. We take the opportunity of this work to present a full account of this technique, which involves simplicial volume and deserves to be better known.

Idioma originalInglés
Páginas (desde-hasta)7071-7086
Número de páginas16
PublicaciónTransactions of the American Mathematical Society
Volumen372
N.º10
DOI
EstadoPublicada - 15 nov 2019

Huella

Profundice en los temas de investigación de 'Macroscopic schoen conjecture for manifolds with nonzero simplicial volume'. En conjunto forman una huella única.

Citar esto