L2-BOUNDEDNESS OF GRADIENTS OF SINGLE-LAYER POTENTIALS AND UNIFORM RECTIFIABILITY

Laura Prat*, Carmelo Puliatti, Xavier Tolsa

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

4 Citas (Scopus)

Resumen

Let A(·) be an (n+1)x(n+1) uniformly elliptic matrix with Holder continuous real coefficients and let εA(x, y) be the fundamental solution of the PDE div A(·)(Formula presented)u = 0 in ℝn+1. Let µ. be a compactly supported n-AD-regular measure in ℝn+1 and consider the associated operator (Formula presented) We show that if Tµ is bounded in L2 (µ), then p. is uniformly n-rectifiable. This extends the solution of the codimension-1 David-Semmes problem for the Riesz transform to the gradient of the single-layer potential. Together with a previous result of Conde-Alonso, Mourgoglou and Tolsa, this shows that, given E c ℝB+1 with finite Hausdorff measure Hn, if THn|E is bounded in L2(Hn |E), then E is n-rectifiable. Further, as an application we show that if the elliptic measure associated to the above PDE is absolutely continuous with respect to surface measure, then it must be rectifiable, analogously to what happens with harmonic measure.

Idioma originalInglés
Páginas (desde-hasta)717-791
Número de páginas75
PublicaciónAnalysis and PDE
Volumen14
N.º3
DOI
EstadoPublicada - 2021

Huella

Profundice en los temas de investigación de 'L2-BOUNDEDNESS OF GRADIENTS OF SINGLE-LAYER POTENTIALS AND UNIFORM RECTIFIABILITY'. En conjunto forman una huella única.

Citar esto