Lower bounds for the number of limit cycles of trigonometric Abel equations

A. Gasull, M. J. Álvarez, J. Yu

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

15 Citas (Scopus)

Resumen

We consider the Abel equation over(x, ̇) = A (t) x3 + B (t) x2, where A (t) and B (t) are trigonometric polynomials of degree n and m, respectively, and we give lower bounds for its number of isolated periodic orbits for some values of n and m. These lower bounds are obtained by two different methods: the study of the perturbations of some Abel equations having a continuum of periodic orbits and the Hopf-type bifurcation of periodic orbits from the solution x = 0. © 2007 Elsevier Inc. All rights reserved.
Idioma originalInglés
Páginas (desde-hasta)682-693
PublicaciónJournal of Mathematical Analysis and Applications
Volumen342
N.º1
DOI
EstadoPublicada - 1 jun 2008

Huella

Profundice en los temas de investigación de 'Lower bounds for the number of limit cycles of trigonometric Abel equations'. En conjunto forman una huella única.

Citar esto