Lossy compression of natural HDR content based on multi-component Transform optimization

Producción científica: Contribución a una revistaReseña científicaInvestigaciónrevisión exhaustiva

Resumen

Linear multi-component transforms (MCTs) are commonly employed for enhancing the coding performance for the compression of natural color images. Popular MCTs such as the RGB to Y'CbCr transform are not optimized specifically for any given input image. Data-dependent transforms such as the Karhunen-Loève Transform (KLT) or the Optimal Spectral Transform (OST) optimize some analytical criteria (e.g., the inter-component correlation or mutual information), but do not consider all aspects of the coding system applied to the transformed components. Recently, a framework that produces optimized MCTs dependent on the input image and the subsequent coding system was proposed for 8-bit pathology whole-slide images. This work extends this framework to higher bitdepths and investigate its performance for different types of high-dynamic range (HDR) contents. Experimental results indicate that the optimized MCTs yield average PSNR results 0.17%, 0.47% and 0.63% higher than those of the KLT for raw mosaic images, reconstructed HDR radiance scenes and color graded HDR contents, respectively.

Idioma originalInglés estadounidense
Páginas (desde-hasta)23-28
Número de páginas6
Publicación2016 Digital Media Industry and Academic Forum, DMIAF 2016 - Proceedings
DOI
EstadoPublicada - 22 sept 2016

Huella

Profundice en los temas de investigación de 'Lossy compression of natural HDR content based on multi-component Transform optimization'. En conjunto forman una huella única.

Citar esto