Resumen
In this paper we mainly study the number of limit cycles which can bifurcate from the periodic orbits of the two centers ẋ=-y, ẏ=x; ẋ=-y(1-(x2+y2)2), ẏ=x(1-(x2+y2)2); when they are perturbed inside the class of all polynomial differential systems with quintic homogeneous nonlinearities. We do this study using the averaging theory of first, second and third orders. © 2013 Elsevier Ltd.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 16-22 |
Publicación | Journal of Mathematical Analysis and Applications |
Volumen | 407 |
N.º | 1 |
DOI | |
Estado | Publicada - 1 nov 2013 |