Knowledge Extraction Based on Wavelets and DNN for Classification of Physiological Signals: Arousals Case

E. Macias*, A. Morell, J. Serrano, J. L. Vicario

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libroCapítuloInvestigaciónrevisión exhaustiva

6 Citas (Scopus)

Resumen

With a large amount of data collected from studies of sleep quality and based on the physiological signals (PS) that are collected, it is possible to use mechanisms that intelligently detect sleep disorders such as arousals (ARS). In this detection, the triggers can be present in any of the PS or can occur from their combinations. Thus, with the characterization of the PS and with a considerable number of examples, it is possible to generate a model that recognizes ARS zones in new samples. In this way, by segmenting the signals and decomposing them into variable frequency bands, thanks to the application of discrete wavelet transform (DWT), it is possible to characterize the contributions of each PS in time and frequency. The features that are extracted give information about the contributions in frequency and time of each PS. Then these characteristics feed a neural network model that iteratively learns the best non-linear function that approximates the input to its corresponding label. Once the methodology was tested, with less than 3% of the training data, it was possible to reach an Area Under Precision-Recall Curve (AUPRC) of 0.261.

Idioma originalInglés estadounidense
Título de la publicación alojadaComputing in Cardiology Conference, CinC 2018
ISBN (versión digital)9781728109589
DOI
EstadoPublicada - sept 2018

Serie de la publicación

NombreComputing in Cardiology
Volumen2018-September
ISSN (versión impresa)2325-8861
ISSN (versión digital)2325-887X

Huella

Profundice en los temas de investigación de 'Knowledge Extraction Based on Wavelets and DNN for Classification of Physiological Signals: Arousals Case'. En conjunto forman una huella única.

Citar esto