TY - JOUR
T1 - Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude
AU - Molina-Ruiz, Manel
AU - Lopeandía, Aitor F.
AU - Gonzalez-Silveira, Marta
AU - Garcia, Gemma
AU - Peral, Inma
AU - Clavaguera-Mora, Maria T.
AU - Rodríguez-Viejo, Javier
N1 - Publisher Copyright:
© 2014 AIP Publishing LLC.
PY - 2014/7/7
Y1 - 2014/7/7
N2 - Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 105K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd2Si, crystallization of amorphous silicon, and vertical growth of Pd2Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.
AB - Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 105K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd2Si, crystallization of amorphous silicon, and vertical growth of Pd2Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.
UR - http://www.scopus.com/inward/record.url?scp=84908546290&partnerID=8YFLogxK
U2 - 10.1063/1.4890106
DO - 10.1063/1.4890106
M3 - Article
SN - 0003-6951
VL - 105
JO - Applied physics letters
JF - Applied physics letters
IS - 1
M1 - 013113
ER -