Irreducible representations of the plactic algebra of rank four

Ferran Cedó, Łukasz Kubat, Jan Okniński

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

3 Citas (Scopus)

Resumen

© 2016 Elsevier Inc. Irreducible representations of the plactic monoid M of rank four are studied. Certain concrete families of simple modules over the plactic algebra K[M] over a field K are constructed. It is shown that the Jacobson radical J(K[M]) of K[M] is nilpotent. Moreover, the congruence ρ on M determined by J(K[M]) coincides with the intersection of the congruences determined by the primitive ideals of K[M] corresponding to the constructed simple modules. In particular, M/ρ is a subdirect product of the images of M in the corresponding endomorphism algebras.
Idioma originalInglés
Páginas (desde-hasta)403-441
PublicaciónJournal of Algebra
Volumen488
DOI
EstadoPublicada - 15 oct 2017

Huella

Profundice en los temas de investigación de 'Irreducible representations of the plactic algebra of rank four'. En conjunto forman una huella única.

Citar esto