Invariant measures on p-adic Lie groups : the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups

Paolo Aniello, Sonia L'Innocente, Stefano Mancini, Vicenzo Parisi, Ilaria Svampa, Andreas Winter

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

We provide a general expression of the Haar measure-that is, the essentially unique translation-invariant measure-on a p-adic Lie group. We then argue that this measure can be regarded as the measure naturally induced by the invariant volume form on the group, as it happens for a standard Lie group over the reals. As an important application, we next consider the problem of determining the Haar measure on the p-adic special orthogonal groups in dimension two, three and four (for every prime number p). In particular, the Haar measure on SO(2,Q) is obtained by a direct application of our general formula. As for SO(3,Q) and SO(4,Q), instead, we show that Haar integrals on these two groups can conveniently be lifted to Haar integrals on certain p-adic Lie groups from which the special orthogonal groups are obtained as quotients. This construction involves a suitable quaternion algebra over the field Q and is reminiscent of the quaternionic realization of the real rotation groups. Our results should pave the way to the development of harmonic analysis on the p-adic special orthogonal groups, with potential applications in p-adic quantum mechanics and in the recently proposed p-adic quantum information theory.
Idioma originalInglés
Número de artículo78
Número de páginas59
PublicaciónLetters in Mathematical Physics
Volumen114
N.º3
DOI
EstadoPublicada - 6 jun 2024

Huella

Profundice en los temas de investigación de 'Invariant measures on p-adic Lie groups : the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups'. En conjunto forman una huella única.

Citar esto