Intermittency for the Hyperbolic Anderson Model with rough noise in space

Raluca M. Balan, Maria Jolis, Lluís Quer-Sardanyons

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

14 Citas (Scopus)

Resumen

© 2016 Elsevier B.V. In this article, we consider the stochastic wave equation on the real line driven by a linear multiplicative Gaussian noise, which is white in time and whose spatial correlation corresponds to that of a fractional Brownian motion with Hurst index H∈([Formula presented], [Formula presented]). Initial data are assumed to be constant. First, we prove that this equation has a unique solution (in the Skorohod sense) and obtain an exponential upper bound for the p-th moment the solution, for any p≥2. Condition H>[Formula presented] turns out to be necessary for the existence of solution. Secondly, we show that this solution coincides with the one obtained by the authors in a recent publication, in which the solution is interpreted in the Itô sense. Finally, we prove that the solution of the equation in the Skorohod sense is weakly intermittent.
Idioma originalInglés
Páginas (desde-hasta)2316-2338
PublicaciónStochastic Processes and their Applications
Volumen127
N.º7
DOI
EstadoPublicada - 1 jul 2017

Huella

Profundice en los temas de investigación de 'Intermittency for the Hyperbolic Anderson Model with rough noise in space'. En conjunto forman una huella única.

Citar esto