Improving automatic edge selection for relational classification

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

Resumen

In this paper, we address the problem of edge selection for networked data, that is, given a set of interlinked entities for which many different kinds of links can be defined, how do we select those links that lead to a better classification of the dataset. We evaluate the current approaches to the edge selection problem for relational classification. These approaches are based on defining a metric over the graph that quantifies the goodness of a specific link type. We propose a new metric to achieve this very same goal. Experimental results show that our proposed metric outperforms the existing ones.

Idioma originalInglés estadounidense
Páginas (desde-hasta)284-295
Número de páginas12
PublicaciónLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
DOI
EstadoPublicada - 2013
Evento10th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2013 - Barcelona, España
Duración: 20 nov 201322 nov 2013

Huella

Profundice en los temas de investigación de 'Improving automatic edge selection for relational classification'. En conjunto forman una huella única.

Citar esto