Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis

Julio Mesa, Cristina Alsina, Udo Oppermann, Xavier Parés, Jaume Farrés, Sergio Porté

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

20 Citas (Scopus)

Resumen

© 2015 Elsevier Ireland Ltd. All rights reserved. Prostaglandins (PGs) are lipid compounds derived from arachidonic acid by the action of cyclooxygenases, acting locally as messenger molecules in a wide variety of physiological processes, such as inflammation, cell survival, apoptosis, smooth muscle contraction, adipocyte differentiation, vasodilation and platelet aggregation inhibition. In the inactivating pathway of PGs, the first metabolic intermediates are 15-keto-PGs, which are further converted into 13,14-dihydro-15-keto-PGs by different enzymes having 15-keto-PG reductase activity. Three human PG reductases (PGR), zinc-independent members of the medium-chain dehydrogenase/reductase (MDR) superfamily, perform the first irreversible step of the degradation pathway. We have focused on the characterization of the recombinant human enzyme prostaglandin reductase 1 (PGR1), also known as leukotriene B4 dehydrogenase. Only a partial characterization of this enzyme, isolated from human placenta, had been previously reported. In the present work, we have developed a new HPLC-based method for the determination of the 15-keto-PG reductase activity. We have performed an extensive kinetic characterization of PGR1, which catalyzes the NADPH-dependent reduction of the α,β-double bond of aliphatic and aromatic aldehydes and ketones, and 15-keto-PGs. PGR1 also shows low activity in the oxidation of leukotriene B4. The best substrates in terms of kcat/Km were 15-keto-PGE2, trans-3-nonen-2-one and trans-2-decenal. Molecular docking simulations, based on the three-dimensional structure of the human enzyme (PDB ID 2Y05), and site-directed mutagenesis studies were performed to pinpoint important structural determinants, highlighting the role of Arg56 and Tyr245 in 15-keto-PG binding. Finally, inhibition analysis was done using non-steroidal anti-inflammatory drugs (NSAIDs) as potential inhibitors.
Idioma originalInglés
Páginas (desde-hasta)105-113
PublicaciónChemico-Biological Interactions
Volumen234
DOI
EstadoPublicada - 5 jun 2015

Huella

Profundice en los temas de investigación de 'Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis'. En conjunto forman una huella única.

Citar esto